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Abstract
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1 Introduction

1.1 Motivation

Super Brownian motion has first been derived as the high ggskiort lifetime diffusion limit of branching
Brownian motions. See [Daw93] for a survey. More recentlyas also been found that particle systems
where particles have less independence than in branchotggses, namely the contact process and the
voter model, have super Brownian motion as diffusion linfihis is particularly interesting because the
local activity in these processes is heavily dependent en(ltfical) density of particles. For dimension
d = 1 Mueller and Tribe [MT95] show that the contact process candsealed to a super Brownian
motion with a drift that depends on the local intensity oftigées. On the other hand the limit of the one—
dimensional voter model is a super Brownian motion wheréaba branching rate is a decreasing function
~(0) =1 — 6 of the local intensity € [0, 1] of particles.

In higher dimensions the dependence on the local densitanicfes gets washed out and in the limit
the actual intensity of particles has to be replaced by ipeeted value. See [DP99] and [CDPOQ] for the
results on the contact process and the voter model resplyctiv

1.2 Our Model

The model that we study in this paper is that of linearly cedaiffusions indexed bf?, d > 3. More
precisely, we consider the process;);>( that takes values in a suitable subspaoef [0, oo)Zd and that
is the unique strong solution of the stochastic differdmtipiation

dX, = AXdt +\/9(X;) dB, (1.1)
whereA is theg—matrix of a random walk of?, and
g : [0,00) — [0, c0) is locally Lipschitz continuous
g7 1((0,00)) = (0, b) for someb € (0, ] (1.2)
g(z) < C(1 4+ 2?) for someC' < oo.

Finally, {(B:(i)):>0, i € Z%} is an independent family of standard Brownian motionsh ¥ oo, then
X =0, b]Zd is the natural choice. I = oo, we have to be a bit more careful. In this case weXldte a
Liggett-Spitzer space with respect.to (Essentially this is a subset [of, oo)Zd with a polynomial growth
condition. As we do not deal with this case here, we do notrilesthe Liggett-Spitzer space in detail but
only refer to [LS81].) It is well known (see [SS80]) that umdleese conditions, faK, € X there exists a
unique strong solution of (1.1) that assumes valuég.in

Since we want to rescale this process to super Brownian mat®ohave to assume thatis of finite
variance. For simplicity of notation we will assume that taadom walk generated by is driftless and
the coordinates are uncorrelated with the same variance:

> A0, 4)inip = 0L, o, Be{l,...,d}. (1.3)
i€Z4

We now rescale the space and the diffusion speed as well asabeof the particles. To this end define
for N € N andt > 0 the random measure

1 .
XN = N > Xen ()0, /5 (1.4)
ieZd

where§ denotes the Dirac measure. FurtherAdt;(R?) denote the space of finite Borel measure®gn
equipped with the vague topology. The idea is that if th@dhgtate converges to a finite measure

XN NER e My(RY) (1.5)
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thenX " also converges a§ — oo to super Brownian motion with some branching rat@he next step is
to define this branching ratein terms of the ingredients foX. To this end we have to make the additional
assumption thai < oo and thaty is of the Wright-Fisher form

), x>0, (1.6)

g(z) = k(1 — 3

for somex > 0.
Note that the assumptions we have made imply that for e#ery 0 there exists a unique stationary
ergodic invariant measuz%’“ for X with intensityd, that is,

/ug’“(dw)x(z’) =0, ez (1.7)
See [CG94]. Denote bythe probability that that a random walk with the symmetrigedhatrix
N 1
A= 5(A+AT) (1.8)

does not return to the origin after first leaving it. This pebbity is positive sinced is transient and it can
be expressed as= (—G(0,0).4(0,0)) ™!, where(exp(t.A));>o is the semigroup of al-random walk and
G its Green function

G(i,j) = /0 exp(tA)(i,j) dt,  i,j €2

This can easily be seen using the following argument: Z&e random walk with—matrix A starting in
Zy = 0 and definery := inf{t > 0: Z; # 0}, 1 := inf{¢t > 70 : Z: = 0}. Hence a simple renewal
argument shows

G(0,0) =E UOOO 1z,-0 dt] = E[7o] + P11 < oo|E [/OOO 1z,—0 dt] .

= (—A(0,0)"' + (1 — 9)G(0,0).

Lemma 1.1 The limit

v =AY = %1?01 0! / vp(dx)g(x(0)) (1.9)
exists and is equal to
2bqk
br — : 1.10
2bg+ K ( )

We prove this lemma in Section 2 by a straightforward comjrtaising the duality of interacting Wright-
Fisher diffusions to coalescing random walks. The maintetout the assumption thais of the Wright-
Fisher type is that we could not establish (1.9) by other mé¢#mough forg(x) = v« itis trivial). In other
cases, as for exampléz) = 22((b — z)*)?, one can show that = 0.

In order to formulate our first theorem [&t>°" denote super Brownian motion R? with branching
rate~ and (spatial) diffusion constanf > 0. That is, forYOW'2 = u € My(R?), Yo" is the unique
solution of the martingale problem: Fore C2(R4),

2 t 2 O’2
M7 :=Y"7 (o) —/ Ye (7Acp> ds (1.11)
0
is a continuous square-integrable martingale with squaiaton process
t
(M*¥), :/ }/'57’”2 (7302) ds (1.12)
0

(see [Daw93]). We suspect that the statement of the follgwleorem is true for aly fulfilling (1.2).
However we could show it only fay of the Wright—Fisher form.
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Theorem 1 Under the assumptior{4.3), (1.5), and(1.6), and with~ from (1.10) the rescgled process
converges a&V — oo in distribution on the Skorohod spaé¥([0, oo) : M ¢(R%)) to Y77,

Note that the voter model is the limit of interacting Wridkisher diffusions withh = 1 andx — oo.
Letting x — oo in (1.10) leads in fact to the same branching rate for thetiitpisuper Brownian motion
as established for the voter model in [CDP00]. On the othadhkettingb — oo with fixed x one might
expect to end up with the same branching rate that one getsrigscaling interacting Feller's branching
diffusions ¢ = oo, g(x) = xz), namely withx. This is in fact true since®* — x asb — cc.

Remark 1.2 Without the spatial rescaling one might wonder whetheretheconvergence to super random
walk Y7 with some branching rate and jump matrixA”. This is in fact true if one define¥}N =
> ieza NX(i)6;. If g fulfills (1.2) and in addition is differentiable inwith ¢'(0) = ~, thenX ™ N=gey,
This statement can easily be shown using the comparisonitpehof [CFG96] and a truncation argument.
In fact, using the fact thatup, . o 92) + ~ we can bound the variance of the total massY || for every

z

fixedT'. Using Doob’s inequality we get that for every> 0 there is aK' < oo such that

P |sup sup | X|| > K} <e.
N>1t€[0,T)
Hence we can changgto
i 9(2), z < K/N
9(2) =14
®9(K/N) -z, z>K/N

and with high probabilityX™ and the corresponding ™ coincide up to timel’. Now definey™:+ =
SUP.¢(0,K/N) @ andyN:— = inf.c0,x/n) % andg™-*(z) = yN* 2. Henceg™ — < gV < gV+. The
comparison scheme of [CFG96] now yields that for a certastrithution determining class of continuous
functionalsF” of (X¢):eo,7]

o N — N+

E[F(Y" ) = E[F(X"7)] <E[F(X")] < E[F(XY)] = E[F(Y" )]

andy — E[F(Y7)] is monotone. A3V * | v andy™:~ 1 + one gets

lim E[F(X™)] = E[F(Y7)].

N —o0

Thus XN M=% ¥~ and hence als& ¥ “=5° v,

1.3 The Long Range Model

We would have liked to formulate our Theorem 1 for more genfenactions g, however we could not
establish Lemma 1.1 for the general case. One way to overttimproblem is to change the scaling of
the model such that the range of interaction gets largeranget and the limit of the equilibrig}’ can be
described via the mean field equation.

That is, in the limitN — oo underv}’ (dz) the coordinates of are independent and are distributed
according to the unique invariant measufe of the one-dimensional diffusion

dZt = 0(9 — Zt)dt + vV g(Zt) dBt (113)

Herec > 0 is a constant that reflects the strength of the interactiate thatZ, solves the integral equation

t
Zy =0+ / e\ /g(Z,) dBg + e (Zy — ). (1.14)
0
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The idea is that any given coordinate interacts with so mangracoordinates that a law of large num-
bers applies. Note thaf? has a density that can be computed explicitly

—C,g z
vy?(dz) cq 1 ( / r—60 >
=0y ——exp | —2¢ ——dr ). (1.15)
dz * g(2) o 9(r)
HereCy? is a normalizing constant. To see that this is the equilibrdensity, note thaZ has generator

GF(2) = c(0 — ) '(2) + 19(=) £ (=) with the adjoinG" £ (=) = c2L (0 — 2)f(2)) + 2 (g(=)f(2)) and
compute

LAdvgd(dz)
g dz
Using (1.14) we see th&?[Z,] = 6 for all t > 0 and thusE” "’ [Z] = 6. Using (1.14) again we get

=0.

t
Var”’[Zy] = Var” ' [7,] = / 2B [¢(Z,)] ds + e~ **Var”s” [ Zy).
0

Using stationarity we can lét— oo and get

Var”’ [ Z) :/ e 2 ds % [g(Zo)].
0

Thus
1

/Dg’g(dz)(z —0)? = %/ﬂgq(dz)g(z) (1.16)

The explicit form of 7Y allows us to show thaf can be defined as in Lemma 1.1. We quote the
following lemma from Baillon et al. [BCGdH95, Propositioh@he uniformity that we state here is not in
[BCGAH95] but follows very easily from their argument).

Lemma 1.3 The limit

v = 191{1019_1 /Dg’g(dz)g(z) (1.17)
exists andy>9 > 0 if and only if
b/2
/ ——dz < 0. (1.18)
o 9(2)
In this case the limit if{1.17)is uniform inc on compact subsets @, co) and
b Yy Py
99 = 20/ exp (—20/ —dz) dy. (1.19)
0 0 9(2)

In the case where is of the Wright-Fisher type it is simple to computg? explicitly.

c,g _ _2cbr
Corollary 1.4 If g(z) = ka(1 — 2/b) T, theny®9 = 2,

We will henceforth assume that that (1.18) holds. Note thiatis the case for examplegthas a positive
derivative ab or if g(z) ~ 2! *# asz — 0 forsomes € [0, 1). On the other hand, far(z) = 22((b—z)")?
the condition is violated.

Let us now define the long range mod&l$’. Let (My)nen be a sequence N that increases too.
This sequence is arbitrary but will be kept fixed. két> 0 and define

AN, §) = 302 2My + 1) ar,aigye G = 1) = Loy (G = 1) (1.20)

Thatis, A" is theg-matrix of a rate3o (more precisely3o2(1 — (2My + 1)~%)) random walk that jumps
to each point in distance at masfy with equal probability. Fop : R — R define

ANp(z) =N > AN, j)p(z + N7V2MyY)) (1.21)
jEZ
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Lemma 1.5 For ¢ € CZ(RY) andz € R?
. N o?
Am AT = = Aplle = 0. (1.22)
Now defineX? as the solution of (1.1) but witll replaced by4” and let
1 > .
X\ = N Z ng(l)(si/(MN\/N)a (1.23)

€24

Again we could establish the following theorem only wheis of the Wright—Fisher form where we
can exploit the well-known duality of interacting WrightisRer diffusions to coalescing random walks (see
[Shi80, Lemma 2.3]. We give more details in the next sectiblowever also here we suspect that the
statement is true fag fulfilling only (1.2).

Theorem 2 Under condition(1.5)and(1.6)with v = 73"2’-‘1

LIXN] =82 pry e (1.24)

1.4 Outline

In the next two sections we give the proofs of Theorem 1 and@eaetively. The proofs rely on the duality
of X to coalescing random walks and make use of the ideas anthstiate developed in [CDPO0Q].

2 Proof of Theorem 1

Before we come to the proof of the theorem we prove the lemmaizpttecedes it.

Proof of Lemma 1.1

If we include for the moment the dependenceXobn the parametefisandx in the notation we can write
down the following scaling property:

LT[XOR] = L2/PpX /P, (2.1)

The verification is elementary and is omitted here. Notewatan conclude from (2.1) that* = by5=/°,
Hence it suffices to show the lemma fo&= 1.

Let us recall that thex—th moments of interacting Wright—Fisher diffusions cancbenputed via a
duality relation with a system of coalescing random walks. See [Shi80, Lemma 2.3] for a fudbaat of
this. We need here only the first and second momentZleand Z2? be random walks witly-matrix A7
that coalesce at ratewhen they occupy the same site. Then the duality yields

E[X,(z!)] = E* [Xo(2})] = E[e"* Xo(21)] (2.2)
E[X,(21)X,(2%)] = B¢ [ X(Z}) Xo(22)). (2.3)

In particular, forX, = 0
Var’[X,(0)] = 0(1 — )P [z} £ 72),

Lettingt — co we get

Var”?[X(0)] = 6(1 — 6)P[Z* andZ? do not coalesde
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This latter probability can be computed in terms of the esgapbability ofg of the difference walk (which

hasg— Q;jﬁ. Hence we have
01 [ wtdz)gtan) = 5 [ valdaa()(1 - o(0)
=K (1 - %/Vg(d:c):zr(())z)
) (2.4)
=K (1 —6— EVar”e [XO(O)])
_ 2R gy
29+ kK
This clearly implies the assertion of the lemma. |

Proof of Theorem 1

The strategy of the proof is to describe the prockd$ via a martingale problem and to show that the
guadratic variation process converges to that of super Bimwmotion. Here we make use of the duality
of interacting Wright Fisher diffusions to coalescing randwalks. In fact, the proof is quite similar to the
one given in [CDPOO] for the voter model and we carry out iradeinly the part that differs.

For ease of notation write

NZ (z +1i/VN).A®0,7)

A
and note that fop € C2(R?)
2
AV o(z) N30 T Ap(a). (2.5)

To meet the technical requirements of [CDPO0O] we will asstimgy € C3(R<) in which case the conver-
gence in (2.5) is uniform if the second and third derivativeg are bounded (see Lemma 2.6 of [CDPO00]):
If we let

d2
loll2,s == sup{dxidxjcp(x), ,j=1,...,d,z € Rd}
a3 d
S k=1,....d,z €R }
+sup{dxidmjdmk<ﬂ( ), 4, ], ,x € RS,
then
o2
lim  sup HANcp — —AgoH =0, K < 0.
N=00 ||y 5<K 2 o

We abbreviate
= 3 Nlg(NXV({z}))da
z€Z4 /N
= Z N~lg (NX (1)) Si/vN
i€Z4

It is an exercise in stochastic calculus to check that

MPN =X (0) - X (9) —/0 XN (ANy) ds (2.6)
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is a continuous square integrable martingale with quadivatiation process

(Mo, = /t Y (¢?) ds. (2.7)
0

With a view to (1.11), (1.12) and (2.4) it is clear that the mpoint is to show that

t
(MY, —/ yXxN (@2) ds =32 0. (2.8)
0

More precisely, the convergence has to be shown to take pldce

In fact, the martingale problem has exactly the form of Teeo2.1 of [CDP0O] with their error term
e being zero and with thei ~.s() replaced bys N~1g(NXXN ({z})). We proceed as in Section 4 of
[CDPO0O0] and define foK > 0

a%:;(t) = sup {‘E[(Fiv —vXM) ()] ‘ X (1) <K} (2.9)
We have to show the following lemma.
Lemma 2.1 (Convergence of the Mean)

Jim exb(t) =0. (2.10)

For the proof of our Theorem 1, convergence of the means ajuldratic variation process is not enough
but L2—convergence is needed. Together with the following morbeninds Theorem 4.1 of [CDPO0O]
improves (2.10) td.2—convergence and in fact yields the conclusion of the pré®heorem 1.

Lemma 2.2 (Moment bounds) Fix T" > 0. There exists a constaft, < oo such that for alls € [0, 7]

E Y (1)) <orXy (1), (2.11)
BIXY (1)) < Or (X0 (1) +1), (2.12)
E [X;V 1?1V (1)] <Or (ng (1)° + 1) . (2.13)

Proof Let L denote the Lipschitz constant @f Then
Y (1) < LX) (1).

Hence (2.11) holds with'r = L. Also (2.13) holds withtCr replaced by Cr. Now note that Ito’s formula

yields
@B (1)) < sLBIXY (1)
and
LRI (1)) < LRI (1)] = LXY (1),
Thus

3
EXY (1Y) < x¥ (1)* + 30T XY (1) + 5L?T2 xV@).

Of courseCr can be chosen such that (2.12) holds. |
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Proof of Lemma 2.1

Note that so far we could adopt the arguments of of [CDPO@jevit using the fact thatis of the Wright—
Fisher form. We will need it only here (and in Lemma 1.1) to lepthe duality to coalescing random
walks in order to show (2.10).

Recall that
_ 2bgk
C2bg+ K’

g(z) = k(1 —z/b)* and

wherey is the escape probability ot 4-random walk (recall (1.8)). Recall also from the proof ofima 1.1
that we can use a scaling argument to that without loss ofrgétyeve may assume = 1. Hence we have

SN = nsup{ E [ > ((1-1)xP(ap - NxP(ah)?) wQ(x)] X)) < K}
mEZd/qu
(2.14)
Now let Z! and Z? be random walks witlg—matrix A7 that coalesce at ratewhen they are at the same
site. Denote by, = A" the transition probability oZ!. Let A, be the event thag! and Z2 have
coalesced by timeand A := U;>0A;. The duality yields, see (2.3), (with! = Z?2 = i)

NE[X{ ({i/ V)] = N7'B[Xon ()] 215
= N'E'[Xo(Z)n); Aw]+ N"E[Xo(Zin) Xo(Zin); Afn]-
Using the central limit theorem, there exists a constart oo such that
pe(0,7) < (V2N -C,  jezd t>0. (2.16)
Thus, sinceX' (1) < K, the second term on the right hand side is smaller than
NT'E'[Xo(Z}3)? < NK? sup pin(0,§)> < Ct79K? - N'74, (2.17)
jezd
Hence we have
> NTEXo(Zi))e(i/ VN)? < C Cp K2 INTY2, (2.18)

i€Z4

where the constarit, depends o only. Hence by dominated convergence it suffices to showfdinal
i€zd

BN = N2 sup { [BXo (21 ) Afy] - LB Xo(ZH)]| : Xo (1) S KN} 0. (219)
However this is true since (see the proof of Lemma 1.1)

lim P[AS] =1—P[4] = 2 (2.20)

T—oc0 K

and the distribution o7}y, and the conditional distribution of},; given A¢, are close. To make this
precise, lev > 0 be arbitrary. FixI; > 0 such that (withC' as in (2.16))

/2
X< 275 torall T > T, 2.21)

LR R
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Estimating the total amount of time two independent randaatksvspend together gives a bound on the
probability thatZ! andZ?2 coalesce between tinfe andt N and end in a particular poirjt

tN
[AtNﬂA ﬂ{ZN—j}<li/ dr ZPT kYpin—r(k,j)
T

kezd

tN
< rpen iy j) - / dr sup p, (0, k)
T k (2.22)

tN
< Hc2t_d/2N_d/2/ =42 gy
T

2kC2t—4/2
< /- -
- d-2
Hence by choosinfy large enough, in addition to (2.21) we may assume

sup PUAN NASN{Zy =} <6N~Y2 T >T,. (2.23)

JEZA

Let R > 0 be such that

Tl*d/QNfd/Q.

]
(14 (v/r) (1 + (2/)42C)
Using (2.16) and the Markov property at tirfie we get forN > 27/t

(2.24)

P'[|Z,| > R] <

(1 + %) Pi(|Z} | > R; Zly = j] < SN~2, (2.25)
Using the central limit theorem again we get that there sxstV, > 27, /t such that for allvV > N, and
|kl < R
- . g —d/2
[pov—1(k:3) = pov-1,0,9)] < 77 N (2.26)
Combining (2.23), (2.25), (2.26), (2.16), (2.24), (2.2nd using the Markov property we get fadr > N,

‘Pl Ziy = j; Ajy] — Pl[ZtN_j]‘

IN

|PZZN_.75ATO] PZ[ZN—]|+5N_‘1/2

IN

Z P Ziy = J; Z%o =k; Aq] - ’YPl[ZtN =7 Z%O = k]| + 20N /2
|[k|<R

. v (2.27)
= | Y v (k) (P2, = ks A5) = LP'(24, = k)| + 20N~
|[k|<R

i c Y 1 . _
P24, < B A5,) — LP1Z4,| < R puv-n (0, ) + 36N 2

IN

< |Pias, ] - 2| cem¥2N—4/2 4 ag NI/
K
< 56N"2,

Since the estimate holds for gllwe get by Holder’s inequality

lim sup gﬁ"y"i(t) < 5KJ.

N—oo

Sinced > 0 was arbitrary, (2.19) follows and the proof of Lemma 2.1 impteted. |
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3 Proof of Theorem 2

As in the proof of Theorem 1 we may assume without loss of gditethatb = 1. The proof here is
analogous to the proof of Theorem 1. First we formulate theingale problem. Fop € CZ(R?)

t
MEN = XV () — X (o) - /0 XN (AVy) (3.0)

is a continuous square integrable martingale with quazivatiiation process

t
(o), = [T () d, (3.2)
0
where
Y= > Ng(NXN({x}))d..
2€Z4 /v NMn

By Lemma 1.5,2(”@ — "—;A<p and hence again it is enough to show thak.m

¢
(M“”Nﬁ—/ yXN (cpg) ds =32 0. (3.3)
0

Using Theorem 4.1 of [CDPOQ] it is enough to establish cogerce of the means instead or, more pre-
cisely, Lemma 2.1 and 2.2 in this setting. The proof of Lemmiaxrks here without changes. In the proof
of Lemma 2.2 we only needed the central limit theorem (whgcimiforce here, too) and the fact that the
probability that two random walks do not coalesce isHere we work with two random walkg™-! and
ZN-2 that run independently according to thematrix. A" and coalesce at ratewhen they are at the same
site. Bypl = 4" we denote the transition probability of any of these randatks: Hence ifZéV"1 =1
andZz,* = j andi # j, then (recall that the walks have rate?(1 — (2My + 1)~ %))

P [ZN:! andZN 2 never coalesdée> P/ [Z\"! # 7z forall t > 0
=1-P[zN! = j —iforsomet > 0]
> 1—302/ pN (0,5 — i) dt.

0
By the central limit theorem there exists a constarguch that
pN (0,5 —i) <OMG* (=42 A1),  t>0,NeN.

Thus fori #£ j

Jim igf P*[zN:1 andZ™*? never coalesde= 1. (3.4)
—00 i#£]

On the other hand, far = 7, the probability to coalesce before eith@t-! or ZV-2 makes a first jump is

551 - After the first jump, the probability to coalesce is nedigiby (3.4). Thus fot > 0
. ii[r7N,1 N,2 ; 60 i
lim P**[Z%" andZ"“ are not coalesced by timéV] = = -, (3.5)
N—ooo 602+Kk K

This yields (2.21) of Lemma 2.2 and hence the statement ofh&.2 holds also in the situation of long
range interactions. Thus the proof of Theorem 2 is completed o
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